Liquid Crystal Phase Behaviour of Attractive Disc-Like Particles
نویسندگان
چکیده
We employ a generalized van der Waals-Onsager perturbation theory to construct a free energy functional capable of describing the thermodynamic properties and orientational order of the isotropic and nematic phases of attractive disc particles. The model mesogen is a hard (purely repulsive) cylindrical disc particle decorated with an anisotropic square-well attractive potential placed at the centre of mass. Even for isotropic attractive interactions, the resulting overall inter-particle potential is anisotropic, due to the orientation-dependent excluded volume of the underlying hard core. An algebraic equation of state for attractive disc particles is developed by adopting the Onsager trial function to characterize the orientational order in the nematic phase. The theory is then used to represent the fluid-phase behaviour (vapour-liquid, isotropic-nematic, and nematic-nematic) of the oblate attractive particles for varying values of the molecular aspect ratio and parameters of the attractive potential. When compared to the phase diagram of their athermal analogues, it is seen that the addition of an attractive interaction facilitates the formation of orientationally-ordered phases. Most interestingly, for certain aspect ratios, a coexistence between two anisotropic nematic phases is exhibited by the attractive disc-like fluids.
منابع مشابه
Clustering and phase behaviour of attractive active particles with hydrodynamics.
We simulate clustering, phase separation and hexatic ordering in a monolayered suspension of active squirming disks subject to an attractive Lennard-Jones-like pairwise interaction potential, taking hydrodynamic interactions between the particles fully into account. By comparing the hydrodynamic case with counterpart simulations for passive and active Brownian particles, we elucidate the relati...
متن کاملParticle dynamics in colloidal suspensions above and below the glass-liquid re-entrance transition
We study colloidal particle dynamics of a model glass system using confocal and fluorescence microscopy as the sample evolves from a hard-sphere glass to a liquid with attractive interparticle interactions. The transition from hard-sphere glass to attractive liquid is induced by short-range depletion forces. The development of liquid-like structure is indicated by particle dynamics. We identify...
متن کاملBoard-like dibenzo[fg,op]naphthacenes: synthesis, characterization, self-assembly, and liquid crystallinity†
Although the majority of small molecules exhibiting liquid crystal phases can be described as either rod-like (calamitic) or disc-like (discotic), many exceptions are known, underscoring the potential of other structural classes to exhibit new and unusual phase behavior. Board-like (“sanidic”) compounds have long represented an interesting class of potential mesogens with proposed applications ...
متن کاملSelf-organized assemblies of colloidal particles obtained from an aligned chromonic liquid crystal dispersion.
The behavior of mono-disperse colloidal particles in a chromonic liquid crystal was investigated. Poly(methyl methacrylate) spherical particles with three different functionalizations, with and without surface charges, were utilized in the nematic and columnar phases of disodium cromoglycate solutions. The nematic phase was completely aligned parallel to the glass substrates by a simple rubbing...
متن کاملPhase diagram of the uniaxial and biaxial soft-core Gay-Berne model.
Classical molecular dynamics simulations have been used to explore the phase diagrams for a family of attractive-repulsive soft-core Gay-Berne models [R. Berardi, C. Zannoni, J. S. Lintuvuori, and M. R. Wilson, J. Chem. Phys. 131, 174107 (2009)] and determine the effect of particle softness, i.e., of a moderately repulsive short-range interaction, on the order parameters and phase behaviour of ...
متن کامل